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Computational Fluid Dynamics of Wind Power
Using Lattice-Boltzmann Method on GPUs
XINYUAN SHAO
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
Wind energy is an environmentally friendly substitute for fossil energy. In order to
extract energy from the wind, wind turbine farms are being built in more and more
places around the world. It is important to evaluate the wind conditions at sites
before construction. However, met masts can only measure wind speed at specific
locations. Usually, measurements are combined with numerical simulations to ob-
tain more information at the location of a wind turbine. The Lattice-Boltzmann
method (LBM) is a new and promising way to numerically simulate many wind
energy problems with the advantage of fast speed, simple implementation and easy
parallelization. In this thesis, a GPU code GANSCANS developed at the Univer-
sity of Manchester based on LBM is tested on wind energy scenarios, such as cases
with forest cover and complex terrain. The case with forest shows good agreement
with experimental data, indicating that GANSCANS is a promising simulation tool
that can give reliable results with acceptable time and computational resource con-
sumption. After validating the code, it is applied to evaluate a real-world case,
Hornamossen. Several combinations of boundary conditions are verified.

Keywords: LBM, GPU, GANSCANS, wind energy, forest, complex terrain.
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Notations

Abbreviations
CFD Computational Fluid Dynamics
CFL Courant–Friedrichs–Lewy number
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DNS Direct Numerical Simulation
FVM Finite Volume Method
GANSCANS GPU-accelerated solver for coupled approaches to Navier-Stokes
GPU Graphics Processing Unit
LAD Leaf Area Density
LBE Lattice Boltzmann Equation
LBM Lattice-Boltzmann Method
LES Large Eddy Simulation
LUMA Lattice-Boltzmann at The University of Manchester
MRT Multi-Relaxation-Time
NS Navier-Stokes
NEWA New European Wind Atlas
PDE Partial Differential Equation
RANS Reynolds-Averaged Navier-Stokes
RMS Root Mean Square
TKE Turbulence Kinetic Energy
TRT Two-Relaxation-Time

Greek symbols
ρ Density
Ω Collision operator
ξ Three dimensional particle velocity
ν0 Viscosity
νtotal Total effective viscosity
τ0 Relaxation time
τtotal Total relaxation time
τw Wall shear stress
εij3 Alternating unit tensor
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φ Latitude
δ Boundary layer thickness

Roman symbols
af Leaf area density
CD Drag coefficient
C Smagorinsky model constant
E Internal energy
f Distribution function
f eq Equilibrium distribution function
F External force
Ff,i Drag force
Fc,i Coriolis force
p Pressure
Re Reynolds number
Reτ Reynolds number based on the friction velocity
S̄ Strain rate tensor
t Time
u Three dimensional mean velocity
x Three dimensional position
uτ Friction velocity
U local wind speed
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1
Introduction

1.1 Background

As the world’s energy resources such as coal, oil and other fossil fuels are nonre-
newable, mankind has been working hard at finding new and sustainable energy
resources for a long time. Nuclear power was considered as a very efficient source of
energy. However, after the Chernobyl disaster, people around the world are prone
to resist nuclear energy and looking for eco-friendly and renewable energy sources as
alternate energy supplies. Nowadays, wind energy is one of the most popular clean
energy sources.
A wind farm is an area with a group of wind turbines to generate electricity. To
design a new wind farm, the wind conditions at the site must be known to evaluate
the power generation rate and the safety of wind turbine structures. Usually, the
wind speed data is collected by setting up a met mast for 1-2 years which can measure
the wind speed up to the hub height of a planned wind turbine. Then, with the
help of the met mast data, the wind conditions at the wind turbine can be estimated
using some simple prediction methods, for example, WAsP [6] or Reynolds-Averaged
Navier-Stokes equations (RANS) [7]. However, these simulations do not consider the
effects of the wakes behind wind turbines. Instead, they use simple wake models.
Therefore, they are not sufficiently accurate and unable to provide the information
on turbulent flow fluctuations, which introduce unsteady loads to turbine blades
and consequently shorten the lifetime of wind turbines. Large Eddy Simulation
(LES) [8] is more accurate but the conventional LES based on the finite volume
method (FVM) needs enormous computing resources. For example, an LES case
over a 10km × 10km × 1km computational domain takes 4-5 days on 400 cores,
indicating this method is too expensive to be used as an industrial tool. Considering
the advantages of the lattice-Boltzmann method (LBM) in parallelization, it has
recently been used as a replacement for the FVM in the simulation of turbulent flows.
Therefore, we are motivated to investigate this method for wind power simulations
in the present study.
LBM is explicit and needs only the information of the nearest nodes, which means
that LBM can be easily accelerated by parallel implementation using the Graphics
Processing Unit (GPU) architecture [9]. A GPU is usually used to render pixels
on the screen, but can also be applied to non-graphical computations because of its
advantage in executing single-instruction multiple threads tasks [10, 11]. LUMA is
an open-source code based on LBM developed at the University of Manchester [12].
It has a GPU version named GASCANS that is used in this project.

1



1. Introduction

1.2 Problem statement
There are usually two choices for wind farm location, offshore and onshore. For
offshore wind farms, the main disadvantage is the high maintenance costs due to
corrosion of the towers caused by salt water. It is also very difficult to transmit
electricity from a wind farm that is far out at sea because cables may also be
corroded by the salt water. Onshore wind farms have longer history than their
counterpart. However it also has disadvantages. For example, the wind farm may
be located near residential areas and cause visual and noise pollution to the local
residents. In order to mitigate this disadvantage, the wind farm is preferably to be
located in remote areas like forests. In this thesis, the main topic is to simulate the
turbulent flow field over homogeneous forest and complex terrain with forest using
the fast LBM code GANSCANS. The simulation results can be used for the wind
turbine structural analysis and serve as a guide for wind farm design.

1.3 Limitations
The limitation of this project is that, as seen in Figure 4.18, for the case of a complex
terrain, although the forest cover is heterogeneous, the code can only simulate a
forest covered with constant leaf area density (LAD) over the height, which is an
unrealistic simplification. In the future, the code needs to be further developed to
account for the varying LAD over the complex terrain.

1.4 Thesis aims and layout
The aim of the project is to comprehensively investigate the capability and perfor-
mance of the LBM code named GANSCANS by simulating several cases: turbulent
channel flow, atmospheric boundary layer with and without forest and the Hor-
namossen case which has complex topography and forest.
The layout of the thesis is as follows:

• The basic theoretical background is introduced in Chapter 2. The theory there
is merely a compact summary of the textbook The Lattice Boltzmann Method
Principles and Practice [1] and reorganized based on the author’s understand-
ing to give a quick and easy start-up point for the upcoming researchers who
want to know a bit of LBM, as the author did.

• Chapter 3 introduces the methodology including the structure of GPUs, the
features of GANSCANS and how to generate turbulence in a practical way.

• Chapter 4 contains three cases: one validation case - the turbulent channel
flow, and two cases to study the influence of complex terrain and forest cover.
The results of these cases are analyzed in detail and compared with existing
experimental data from some articles.

• Chapter 5 gives the conclusion of this project and some perspectives for future
studies.

2



2
Theory

This chapter is mainly focused on the theories used in this project, including LBM
and basic knowledge of wind power. The aim of this chapter is to give readers a
comprehensive understanding of the theories that play important role in this project.
Although there are many existing textbooks that cover these theories (the one refer-
enced here is [1]), this section will give readers an easy-to-understand way to quickly
get hand of them from a beginner’s perspective.

2.1 Lattice-Boltzmann Method

As no one knows the exact origin of the universe we live in, the author is always
thinking about one of the philosophical questions: are those axioms describing our
universe simply specific projections of the ’real’ axioms, which means that other
kind of projections can also be taken to simplify the expression of them? LBM is
a relatively new method that is based on kinetic theory instead of conservation of
mass and momentum. It has obvious advantages over the conventional computa-
tional fluid dynamics (CFD) method. For example, it is simple, scalable on parallel
computers, and easy to deal with complex geometries.

2.1.1 Kinetic theory

Kinetic theory is the cornerstone of LBM. In conventional CFD, the typical scale
is the scale for the gradient in some macroscopic properties, while in LBM, the
typical scale is the mean free path (Figure 2.1). It can also be seen from Figure 2.1
that LBM does not invest individual molecules or fully continuum media. Instead,
it tracks the distributions of collections of molecules. This trade-off makes LBM
an efficient method of computing fluid dynamics with reasonable computational
resources consumption.
The particle distribution function f(x, ξ, t) is the fundamental variable in the kinetic
theory. Specifically, ξ stands for three-dimensional velocity (ξx, ξy, ξz) and x is the
three-dimensional position (x, y, z). We conceive that f(x, ξ, t) is equivalent to the
density ρ. Nonetheless, their difference lies in the fact that ρ(x, t) represents the
density of mass only in physical space, while f(x, ξ, t) represents the density of mass
not only in physical space but also in velocity space.

3



2. Theory

Figure 2.1: Length and time scales in different kind of simulations [1]

The moments of the distribution function f can act as a link between mesoscopic
and macroscopic variables. The relations between them are as follows:

ρ(x, t) =
∫
f(x, ξ, t)d3ξ (2.1)

ρ(x, t)u(x, t) =
∫
ξf(x, ξ, t)d3ξ (2.2)

ρ(x, t)E(x, t) = 1
2

∫
|ξ|2f(x, ξ, t)d3ξ (2.3)

In order to know how the distribution function evolves in time, its total derivative
with respect to time is taken:

df
dt =

(
∂f

∂t

)
dt
dt +

(
∂f

∂xβ

)
dxβ
dt +

(
∂f

∂ξβ

)
dξβ
dt (2.4)

Usually, in the literature on LBM, Ω(f) = df/dt is used for the total differential.
Moreover, as dt/dt = 1, dxβ/dt = ξβ and dξβ/dt = Fβ/ρ, Eq.(2.4) is simplified as:

∂f

∂t
+ ξβ

∂f

∂xβ
+ Fβ

ρ

∂f

∂ξβ
= Ω(f) (2.5)

This is the Boltzmann equation in continuous space. It is worth noting that Ω(f)
is usually called the collision operator and conserves the quantities of mass and
momentum: ∫

Ω(f)d3ξ = 0 (2.6)
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∫
ξΩ(f)d3ξ = 0 (2.7)

In the view of fluid dynamics, calculating mesoscopic variables is not the final goal.
The final goal is to get macroscale variables like density and velocities so that the flow
field can be described. It is vital to prove that macroscopic fluid mechanics equations
can be derived directly from the Boltzmann equation by taking the moments of it.
Here only the detailed derivation procedures of the mass conservation equation is
given. For the momentum and energy conservation, the procedures are similar and
can be found in [1].
Integrating the Boltzmann equation over velocity space as follows:

∂

∂t

∫
f d3ξ + ∂

∂xβ

∫
ξβf d3ξ + Fβ

ρ

∫ ∂f

∂ξβ
d3ξ =

∫
Ω(f)d3ξ (2.8)

On the basis of Eq.(2.1), (2.2), (2.6) and
∫ ∂f
∂ξβ

d3ξ = 0, the mass conservation reads:

∂ρ

∂t
+ ∂ (ρuβ)

∂xβ
= 0 (2.9)

2.1.2 The lattice Boltzmann equation
In Section 2.1.1, the continuous Boltzmann equation is obtained. However, the
distribution function f(x, ξ, t) is a seven-dimensional function (x, y, z, ξx, ξy, ξz and
t) which is very hard to solve numerically. However, for fluid dynamics problems,
the exact value of f(x, ξ, t) is not what we are looking for. We only care about
whether the moments of the distribution function can recover some macroscopic
variables such as density and velocities. With the proper discretization in velocity,
space and time, the lattice Boltzmann equation can be obtained and it is simple to
implement and parallelise.

2.1.2.1 Discretization in velocity space

The moments are the weighted integrals of f in velocity space (see Eq.(2.1)-(2.3)).
Instead of finding the exact value of f , it is a worthy compromise to only find one
function whose integral is identical to that of f . Because f is a function of velocity
ξ, it is natural to start from the velocity discretization.
Firstly, the equilibrium distribution function should be introduced. A pre-knowledge
is that collisions tend to even out the angular distribution of particle velocities. The
result is that if we let a gas develop for sufficiently long time, the distribution
function f will finally reach an equilibrium distribution f eq, which is a function of
the mean velocity u, the position x and time t. The detailed derivation can be
found at [1], and here only the final form of f eq is given below:

f eq(x, |v|, t) = ρ
( 3

4πe

)3/2
e−3|v|2/(4e) = ρ

(
ρ

2πp

)3/2

e−p|v|2/(2ρ)

= ρ
( 1

2πRT

)3/2
e−|v|2/(2RT )

(2.10)

5



2. Theory

Hermite polynomials are usually used as base functions to approach a certain well-
behaved continuous function by summing the combination of Hermite series and
expansion coefficients:

f(x) = ω(x)
∞∑
n=0

1
n!a

(n) ·H(n)(x), a(n) =
∫
f(x)H(n)(x)ddx (2.11)

where:
ω(x) = 1

(2π)d/2 e−x2/2 (2.12)

Apply the Hermite series expansion like in Eq.(2.11) to f eq:

f eq(ρ,u, θ, ξ) = ω(ξ)
∞∑
n=0

1
n!a

(n),eq(ρ,u, θ) ·H(n)(ξ) (2.13)

a(n),eq(ρ,u, θ) =
∫
f eq(ρ,u, θ, ξ)H(n)(ξ)ddξ (2.14)

Substitute Eq.(2.10) into Eq.(2.14) and calculate the integration:

a(0),eq = ρ =
∫
f eqddξ (2.15)

a(1),eq
α = ρuα =

∫
f eqξαddξ (2.16)

a
(2),eq
αβ = ρ (uαuβ + (θ − 1)δαβ) (2.17)

a
(3),eq
αβγ = ρ [uαuβuγ + (θ − 1) (δαβuγ + δβγuα + δγαuβ)] . (2.18)

Eq(2.15) - (2.17) relate to the density, momentum and energy, respectively. These
are the only three variables required to fulfil the conservation laws and represent
the macroscopic equations. So it is sufficient to only keep the first three terms in
Eq.(2.13) to recover the Navier-Stokes (NS) equations. Then, f eq will be:

f eq(ρ,u, θ, ξ) ≈ ω(ξ)ρ [1 + ξαuα + (uαuβ + (θ − 1)δαβ) (ξαξβ − δαβ)] (2.19)
Moreover, another characteristics of Hermite polynomials is that the integrals of
certain functions can be calculated by summing up integral function values at a
few discrete points. Without giving complicated mathematical details, the velocity
discretization is simply given here. The details can be found at [1].

f eq
i = wiρ

[
1 + ξiαuα + 1

2 (uαuβ + (θ − 1)δαβ) (ξiαξiβ − δαβ)
]

(2.20)

Unlike in Eq.(2.19), Eq.(2.20) shows that continuous velocity set is replaced with
discrete velocity set and consequently, the distribution function becomes a set of
distribution functions where each corresponding to one discrete velocity.
Eq.(2.20) can be further simplified by introducing the isothermal assumption and a
new particle velocity ci = ξi√

3 . The final discrete equilibrium distribution function
is:

f eq
i = wiρ

(
1 + ciαuα

c2
s

+ uαuβ (ciαciβ − c2
sδαβ)

2c4
s

)
(2.21)

The mathematical derivations seem to be complex in this section, but the basic
idea behind them is very straightforward, that is, firstly simplifying an exponential
function (Eq.(2.10)) into a polynomial function with a finite number of terms and,
then, discretizing the polynomial function in velocity space.
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2.1.2.2 Discretization in space and time

In conventional CFD methods of FVM, the space discretization is flexible since a
mesh cell or element can have an arbitrary shape. By contrast, LBM commonly
adopts a uniform and structured grid. Let’s start from the non-dimensional force-
free Boltzmann equation with discrete velocities:

∂fi
∂t

+ ciα
∂fi
∂xα

= Ωi (2.22)

It can be rearranged as an ordinary differential equation like Eq.(2.4):
dfi
dζ =

(
∂fi
∂t

)
dt
dζ +

(
∂fi
∂xα

)
dxα
dζ = Ωi(x(ζ), t(ζ)) (2.23)

where:
dt
dζ = 1, dxα

dζ = ciα (2.24)

Integrate from ζ = 0 to ζ = ∆t:

fi (x+ ci∆t, t+ ∆t)− fi (x, t) =
∫ ∆t

0
Ωi (x+ ciζ, t+ ζ) dζ (2.25)

The left-hand side of Eq.(2.25) is exact. The right-hand side cannot be evaluated
exactly because the collision operator is not yet known. However, it is possible to
approximate the right-hand side integration by first- or second-order discretization
with unknown collision operator. It is proved that both first and second-order
discretization can provide second-order accuracy in time [13, 14]. Taking the first-
order discretization, the lattice Boltzmann equation (LBE) reads:

fi (x+ ci∆t, t+ ∆t) = fi(x, t) + ∆tΩi(x, t) (2.26)

2.1.2.3 BGK collision operator

Until now, the fully discretized LBE of Eq.(2.26) is obtained. The only missing part
of this jigsaw is the collision operator Ωi(x, t). The exact form of the collision oper-
ator is really complicated as it stands for all the possible outcomes of collisions. But
as mentioned previously, the underlying microscopic information is not what we are
mainly focusing on. The collision operator can accomplish its mission successfully
as long as it can recover the macroscopic equations.
The most commonly used collision operator is the Bhatnagar-Gross-Krook (BGK)
collision operator:

Ωi = −fi − f
eq
i

τ
(2.27)

It is easy to interpret its physical meaning, that is, after a time τ , the population
fi will approach its equilibrium state f eqi . Combining Eq.(2.26) with Eq.(2.27) and
making some rearrangements, it becomes:

fi (x+ ci∆t, t+ ∆t) =
(

1− ∆t
τ

)
fi(x, t) + ∆t

τ
f eq
i (x, t) (2.28)

It can be noticed that fi can be evolved to f eqi immediately or even beyond f eqi
causing instability. It is found that τ/∆t ≥ 1/2 is a necessary condition for a stable
LBM simulation.
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2.1.3 Numerical implementation procedure of LBM

In Section 2.1.2, the basic derivations of LBM are introduced in a very concise way.
For engineers, it is of high interest to apply LBM to real engineering problems. In
this section, let us forget about these trivial formulas for a while and devote ourselves
to summarising a whole process for implementing LBM numerically.

Figure 2.2: LBM algorithm

The LBM algorithm is divided into several steps:
• Initialization

Usually, fi is initialized by the initial value of f eq
i (ρ(x, t = 0), u(x, t = 0)).

• Moment update
The density and velocities can be updated in a similar way as Eq.(2.1) and
Eq.(2.2) but replace the integration with summation over all populations.

• Equilibrium
With the updated density and velocities, the equilibrium distribution can also
be updated as Eq.(2.21).

• Collision
Perform collision as the terms on the right hand side of Eq.(2.28).

• Streaming
Perform streaming to obtain fi (x+ ci∆t, t+ ∆t) based on the terms on the
right hand side of Eq.(2.28).

• Go to the next time step
Go to the next time step and repeat the previous steps until it fulfils certain
requirements.
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2.1.4 Stability

We all want to perform a simulation without crashing caused by instability. In
conventional CFD, the Courant–Friedrichs–Lewy number (CFL number) is a com-
monly used standard to predict whether a simulation will be stable or not. Usually,
it should not be larger than 1. But for LBM, stability analysis is a more compli-
cated task than that of conventional CFD. So here no mathematical description of
stability analysis will be presented. Interested readers can refer to [15, 16] for more
information. However, it is important for engineers to know some simple guidelines
for improving the stability of simulations. This is exactly what we will look deeply
in this section.
The Reynolds number is written as:

Re = |u|N∆x
c2

s

(
τ − ∆t

2

) (2.29)

where |u| is the velocity magnitude, N is the number of lattice nodes along a char-
acteristic length scale N∆x, ∆x is the length of one node, and cs is the sound
speed of the isothermal model which can be calculated as c2

s = (1/3)∆x2/∆t2. In
order to control the computational resource consumption, N is usually fixed to a
proper number at the beginning of the simulation and then it remains unchanged.
τ is adjusted to keep Re unchanged and |u| � cs. The fundamental procedure is
shown in Figure 2.3. But remember that in the real situation when boundary con-
ditions are applied, it is not so easy to guarantee stability even if a relaxation time
τ fulfils all requirements in Figure 2.3. A possible way to increase stability is to
use other advanced collision operators such as two-relaxation-time (TRT) [17] and
multi-relaxation-time (MRT) [18].

Figure 2.3: Stability
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2.1.5 Accuracy

Many numerical errors may occur in LBM as in conventional CFD, namely, round-off
error, iterative error, modeling error and discretization error.

• Round-off error
This kind of error arises because of finite precision of computers. It can be
mitigated by using more decimal digits.

• Iterative error
Our strategy for solving steady state problems is to run the simulation for
sufficient long time and take that solution as a converged solution. But LBM
adopts an explicit time-marching procedure, which may cause the solution
differ from the real steady state after a long running time.

• Modeling error
The main sources of LB modeling error come from the chosen lattice type and
the chosen form of the equilibrium distributions.

• Discretization error
Approximating the partial differential equations (PDEs) by algebraic equa-
tions definitely causes discretization errors. The spatial discretization error is
related to ∆x2, while the time discretization error is related to ∆t2.

2.1.6 Boundary condition

Like in conventional CFD, boundary conditions are also necessary for LBM to solve
certain cases. Another requirement to solve LB equations is the initial condition.
However, because in this project, only the long-time behaviour of the unsteady flow,
which is not relevant to the exact choice of the initial condition is concerned, the
initial condition will not be discussed. Three generally used boundary condition will
be introduced in detail: periodic boundary, solid boundary using the bounce-back
approach and symmetry (free-slip) boundary.

2.1.6.1 Two groups of LB boundary conditions

For beginners even with a fundamental knowledge of conventional CFD, it can be
confusing to understand how boundary conditions are formulated in LBM. Like data
can be cell- or node-centered in the conventional CFD, data in LBM can also be
defined at lattice links (link-wise) or at lattice nodes (wet-node).

• Link-wise boundary condition
It can be seen that in Figure 2.4, the physical boundary and computational
domain do not coincide with each other. Instead, the boundary nodes that are
the solid circles shift half a cell length inside. The lattice nodes can be seen
as located at the center of each computational cell.

• Wet-node boundary condition
The boundary nodes lie exactly on the physical boundary. The lattice nodes
are at the vertices of the computational cells.

10
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Figure 2.4: Two kinds of boundary conditions implementations in LB from [1]

2.1.6.2 Periodic boundary

The periodic boundary is widely used to simulate channel flow reaching fully de-
veloped state within a finite computational domain. By enforcing the unknown
incoming populations f ∗i at the inlet to be identical to those at the outlet, the
computational domain can be pretended to be infinitely long.
It can be seen that in Figure 2.5, there are virtual nodes at the inlet and outlet (at
x0 = x1 −∆x and xN+1 = xN + ∆x). The relations between the populations of the
virtual nodes and those inside the domain are:

f ∗1 (x0, y2, t) = f ∗1 (xN , y2, t)
f ∗5 (x0, y2, t) = f ∗5 (xN , y2, t)
f ∗8 (x0, y2, t) = f ∗8 (xN , y2, t)

,
f ∗3 (xN+1, y2, t) = f ∗3 (x1, y2, t)
f ∗6 (xN+1, y2, t) = f ∗6 (x1, y2, t)
f ∗7 (xN+1, y2, t) = f ∗7 (x1, y2, t)

. (2.30)

Figure 2.5: Periodic boundary condition from [1]. The computation domain starts
from x1 and ends at xN . The virtual node exists at x0 and xN+1.

2.1.6.3 Solid boundary using bounce-back approach

The bounce-back method is an effective and simple way to deal with no-slip fluid-
solid interface. The fundamental idea is quite intuitive: when the population hits
the solid wall, it will be reflected back to the opposite direction as to their incoming
one. As shown in Figure 2.6, the specific implementation for a bottom wall is:

f2 (xb, t+ ∆t) = f ∗4 (xb, t) ,
f5 (xb, t+ ∆t) = f ∗7 (xb, t) ,
f6 (xb, t+ ∆t) = f ∗8 (xb, t) .

(2.31)
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Figure 2.6: Bounce-back method at a bottom wall in [1]

2.1.6.4 Symmetry (free-slip) boundary

There is always a contradiction between the increasing requirement for accuracy and
the limited computational resources. It will be beneficial to find a way to reduce
the total number of nodes without affecting the accuracy. Symmetry is an inherent
property of many fluid fields like Poiseuille flow. The symmetric flow can be halved
by their symmetry axis. As shown in Figure 2.7, the implementation is:

f7 (xb + c7,t∆t, t+ ∆t) = f ?6 (xb, t) ,
f4 (xb + c4,t∆t, t+ ∆t) = f ?2 (xb, t) ,
f8 (xb + c8,t∆t, t+ ∆t) = f ?5 (xb, t) ,

(2.32)

where ci,t stands for the tangential velocity of the populations.

Figure 2.7: Symmetry (free-slip) boundary condition in [1]

2.1.7 Force
The flow cannot move without any energy input (no pressure, no force, no poten-
tial energy difference, etc). Force plays an important role in many hydrodynamic
problems. For some incompressible flows whose driven mechanism is the pressure
gradient, they can also be simulated equivalently by applying adequate body force.
Body forces are easy to include in LBM. The only step is to add a procedure between

12



2. Theory

equilibrium and collision as in Figure 2.2, which calculates the source term:

Si =
(

1− ∆t
2τ

)
wi

(
ciα
c2

s
+ (ciαciβ − c2

sδαβ)uβ
c4

s

)
Fα (2.33)

Then, the post-collision populations are calculated as:

f ?i = fi + (Ωi + Si) ∆t (2.34)

2.1.8 Smagorinsky subgrid model for LBM
The basic idea of LES is not only to resolve relatively large scales, but also to use
a subgrid model to estimate the unresolved small scales. The spatial filtering is the
step before applying the subgrid model. After spatial filtering, the LBE becomes:

f̄i (x+ ci∆t, t+ ∆t) = f̄i (x, t) + ∆tΩ̄i (x, t) (2.35)

The equilibrium distribution function becomes:

f̄ eq
i = wiρ

(
1 + ciαūα

c2
s

+ ūαūβ (ciαciβ − c2
sδαβ)

2c4
s

)
(2.36)

The Smagorinsky model relates the eddy viscosity to the local strain rate tensor S̄.
The total effective viscosity is calculated as:

νtotal = ν0 + C∆2|S| (2.37)

with:
|S| =

√
S̄ : S̄ (2.38)

S̄ = 1
2
(
∇ū+ (∇ū)T

)
(2.39)

The relaxation time then becomes:

τtotal = τ0 + 3∆t
∆x2C∆

2|S| (2.40)

2.2 Wind energy

2.2.1 Forest modelling
The drag force caused by the existence of the forest is modeled with the help of the
forest drag coefficient CD, the leaf area density (LAD) af and the local wind speed
U =

√
ūiūi [19].

Ff,i = −CDafUūi (2.41)
The forest drag coefficient CD is usually taken between 0.15 and 0.2 [20, 21]. Ac-
cording to [22], the LAD distribution af (z) can be described by the function:

af (z) = afm

(
h− zm
h− z

)n
exp

[
n

(
1− h− zm

h− z

)]
(2.42)
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where
n =

{
6 0 ≤ z < zm
1
2 zm ≤ z ≤ h

(2.43)

and zm is the location where af (z) gets its maximum value afm. Taking zm = 0.7h
and afm = 2.18, the curve of af (z) is shown in Figure 2.8.

Figure 2.8: Leaf-area density

2.2.2 Coriolis
Another force that usually needs to be taken into account is the Coriolis force due
to the rotation of the earth. It can be formulated as Eq.(2.44) [4].

Fc,i = 2Ω sin(φ) (ūj − uj,g) εij3 (2.44)

where Ω, uj,g, εij3 and φ are the rotation rate, the geostrophic wind component,
the alternating unit tensor and the latitude respectively. As the average velocity ūi
varies along the height, the Coriolis force acting as a driven force also varies along
the height. However, in this project, the driven force is simplified as a constant
force. In the future, it is valuable to include the Coriolis force in the code to see
how large effect it can bring to the simulation results.
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3
Methodology

In this chapter, the methods used to carry out this project are presented, including
the architecture of GPU, the features of the computational code GANSCANS and
a practical way of generating turbulent flow.

3.1 GPU

The biggest difference between central processing unit (CPU) and GPU is that GPU
contains more cores than CPU, but the clock speed of each core is significantly slower
than that of CPU. For example, in Figure 3.1, one GPU comprises n multiprocessors
and each multiprocessor has 12 cores. GPU is suitable to operate on large chunks
of date in parallel as it is designed for data intensive applications. As for LBM, the
collision step is local and the streaming step is merely a data shifting operation that
does not need any computation at all. Because of these characteristics, LBM can
straightforwardly take advantage of GPU’s parallel computation features.

Figure 3.1: CPU and GPU architecture comparison (MP stands for multiproces-
sor)

3.1.1 CUDA
Compute Unified Device Architecture (CUDA) is a programming platform serving
as a bridge between the hardware and the programming language. It was developed
by Nvidia in order to allow easy realization of general computations on Nvidia GPUs
[23]. Here, we will not give details about how it works as the goal of this thesis is
not to code but to apply the code to solve real engineering problems.
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3.2 Features of GANSCANS

The full name of GANSCANS is GPU-accelerated solver for coupled approaches to
Navier-Stokes using C++ and CUDA [24]. It is a computationally efficient and user
friendly LB solver that is mainly focused on turbulent flows [25]. It can make use of
multiple GPUs but can only run on a single node [25]. All features listed in Table
3.1 [25] are available on a single GPU using double precision, but some features
may not be able to run on multiple GPUs or using single precision right now. It
needs to point out that GASCANS is highly capable of adding new features. For
example, the forest model was implemented into GANSCANS in a short time for
the requirement of this project. It is believed that in the future, GANSCANS can
be developed to cope with more engineering application scenarios.

Table 3.1: GASCANS features

Feature Multi GPU Single precision
Core LB solver Yes Yes

Point cloud reader Yes Yes
Body force Yes No

Momentum exchange No Yes
Immersed boundary method No No
LES Smagorinsky model Yes Yes
SEM boundary condition Yes Yes

Time averaging Yes Yes
Sponge layer Yes Yes

Coupling with another code Yes No
Restart a simulation Yes Yes

3.3 Turbulence generation

It may seem to be out of the scope of this thesis to investigate how to generate
turbulence. But turbulence generation is definitely an important part in order to
carry out the simulation successfully. Otherwise, the flow field could remain laminar
or take a long time to become fully turbulent, which is infeasible given the limited
simulation time. A common way of turbulence generation is to use synthetic turbu-
lence as the inlet boundary condition [26], but it is difficult to apply to our present
case. Inspirations were got from Anika et al. [2]. In their work, they put consecutive
and staggered half cubes inside a channel to trigger turbulence at a relatively low
Reynolds number (see Figure 3.2). Actually, from all cases that have been tested
(Figure 3.3), only the case with the cube throughout the entire spanwise length (Fig-
ure 3.3a) failed to generate turbulence. Because of the limited time and resources
of this project, the influence of the height of the cube on turbulence generation has
not been studied yet, but it is an enlightening research topic for the future.
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Figure 3.2: The channel with consecutive and staggered half cubes from [2]

a b

c d

e f

Figure 3.3: Cubes with different spanwise length tested, top view
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4
Results and Discussion

4.1 Turbulent channel flow - validation case
Fully developed turbulent channel flow is a commonly used benchmark problem to
test new algorithms and validate codes. Direct numerical simulation (DNS) data
that are available for comparison can be traced back to early studies, for example,
in [27]. This turbulent channel flow case acts as an important role to make sure that
GANSCANS can give reasonable simulation results.

4.1.1 Simulation setup
The configuration of the computational domain is shown in Figure 4.1. The domain
has 12H in the streamwise direction, 2H in the vertical direction and 4H in the
spanwise direction. The upper and lower wall are set to the no-slip boundary condi-
tion, and periodic boundary condition for the other boundaries. The grid resolution
is 31, which means that over the length of H, there will be 31 nodes.

Figure 4.1: Computational domain configuration for turbulent channel flow

The flow is driven by a pressure gradient. Since the flow is fully developed, the
pressure gradient should be balanced with the wall shear stress according to the
following equation:

− ∂p

∂x
H = τw , (4.1)

where H stands for the half height of the channel. Moreover, the friction velocity
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uτ is defined as:
uτ =

√
τw
ρ
. (4.2)

Substitute Eq.(4.2) into Eq.(4.1),

− ∂p

∂x
= ρu2

τ

H
(4.3)

As mentioned in Section 2.1.7, the pressure gradient is usually replaced by a equiv-
alent body force:

G = ρu2
τ

H
. (4.4)

In order to compare with the DNS data from Moser et al. [27], the Reynolds number
Reτ as in Eq.(4.5) is set to around 180.

Reτ = uτH

ν
(4.5)

The parameters set for the simulation are listed in Table 4.1. It needs to be noticed
that C is the Smagorinsky model constant as in Eq.(2.37). Because the the flow is
incompressible, the density is set to a default value which is equal to 1. As a result,
the corresponding Reτ is 177.6 theoretically.

Table 4.1: Simulation parameters for turbulent channel flow

Parameter value Parameter value
Resolution 31 size X [m] 12

Time step [s] 0.001 size Y [m] 2
Kinematic viscosity ν [m2/s] 1/3250 size Z [m] 4

body force [N] 0.002986 C 0.01

Although the configuration of the channel flow is very simple, it is still hard to
simulate. One big issue is how to trigger turbulence. Here the inspiration is got
from Anika at al. [2] and more details are given in Section 3.3. A cuboid with half
of the width of the channel, as shown in Figure 4.2, is put near the inlet to initialize
turbulence. After 1 million time steps, the cuboid was removed and the simulation
ran for another 3 million time steps before starting the time average.

4.1.2 Results
The first thing before diving into the simulation results is to make sure that the
flow is fully developed. Figure 4.3 shows the velocity fluctuations in the last 50000
time steps of the simulation. The values of the velocity oscillate around the mean
value which is about 0.03dx/dt = 0.968m/s. It is safe to say that the flow is fully
developed.
Figure 4.4a shows the instantaneous velocity distribution. Although the grid is
relatively coarse, many turbulent features can still be observed, such as streaks in
the near-wall plane. The Q-criterion is a vortex identification method [28]. The
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Figure 4.2: To trigger turbulence

Figure 4.3: Fluctuations of velocity in the x direction in the last 50000 time steps

a b

Figure 4.4: (a) Visualization of instantaneous turbulent channel flow field. The
bottom plane is at y+ = 9. (b) The isosurface of Q = 0.0002
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isosurface of Q = 0.0002 is shown in Figure 4.4b. It can be seen that the code is
able to resolve small turbulent structures.
The time-averaged results are compared with the DNS data of Moser et al. [27]
and the LBM data from Koda et al. [29] quantitatively (see Figure 4.5a, 4.5b and
4.5c). Generally, the results of our present work show good agreement with the
LBM data obtained by Koda et al. [29], especially in the near wall region. The
discrepancy tends to be larger as y+ increases from 10 to 100, but the largest mean
velocity error is less than 5% and the largest root mean square (RMS) velocity
error is less than 10%. The difference between DNS and LBM data is relatively
large. The LBM simulation result significantly underestimates the mean velocity.
According to Koda et al. [29], this underestimation of the mean velocity is due to
the underestimation of the mass flow rate that is caused by the coarse mesh and the
lack of the wall-damping function in the Smagorinsky subgrid-scale model.
All in all, GASCANS is validated through the case of turbulent channel flow. Al-
though the results from GANSGANS show difference from DNS data, this is actually
acceptable considering that GANSGANS used fewer nodes compared to DNS. It can
be said with confidence that the results will be better if the mesh resolution is in-
creased.

4.2 Atmospheric boundary layer
In the previous chapter, the turbulent channel flow was studied in order to verify
the capability of GANSCANS. However, for real wind energy application scenarios,
channel flow conditions may not be fully applicable. In this section, one of the exter-
nal flow systems, the atmospheric boundary layer (ABL) is considered. Moreover,
when deciding the location of a wind farm, a flat terrain without forest is definitely
the first choice. However, this kind of ideal terrain is hard to find, especially in
the current situation that wind energy is under high speed expansion worldwide. A
compromise must be made, that is, installing wind turbines in complex terrain with
hills or forest or both. This is why the influences of hills and forests on ABL are the
main focus of this section.

4.2.1 Influence of hills

4.2.1.1 Simulation setup

The turbulent flow over a circular hill has been thoroughly studied by Ishihara et
al. [30, 31] both experimentally and numerically, so detailed data are available for
comparison. The hill is a three-dimensional hill with a cosine-square cross section
that can be described in Eq.(4.6). The profile of the cross section of the hill can
be seen in Figure 4.6a. The height of the hill is H = 40 mm and the base radius
L is 100 mm. The dimensions of the computational domain are 1000 mm, 800 mm
and 600 mm for length, width and height respectively. The hill is located in the
middle of the bottom (see Figure 4.6b). The periodic boundary condition is applied
to the inlet and outlet as well as the lateral walls. The upper wall is assumed to
be a free-slip wall while the lower wall and the surface of the hill are using the
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a

b

c

Figure 4.5: (a)Mean velocity profile, U+ = U/uτ , y+ = yuτ/ν. (b) RMS velocity
profiles of u′u′/u2

τ , v′v′/u2
τ and w′w′/u2

τ (c) Profile of −u′v′/u2
τ
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bounce-back boundary condition. The size of the cell is kept constant everywhere
with ∆x = ∆y = ∆z = 4mm. The flow is driven by a constant body force in the
x-direction. The parameters and their values for this simulation are tabulated in
Table 4.2 for clarity.
The most important thing is that the Reynolds number of the simulation and the
experiment must be kept similar to make their results comparable. According to the
experiment of [30], the Reynolds number U∞δ/ν of the simulated boundary is equal
to 1.4×105. It needs to be mentioned that δ here is the boundary layer thickness at
the location where the hill is mounted. For the numerical simulation, the Reynolds
number with the same definition is about 3.6×105. Although the Reynolds numbers
are not exactly the same, they are of the same order of magnitude. Therefore, it is
quite reasonable to compare their results.

z =

 H cos2
(
π

√
x2+y2

2L

)
,
√
x2 + y2 < L

0 ,
√
x2 + y2 ≥ L

(4.6)

a b

Figure 4.6: (a) The profile of the cross section of the hill. (b) The computational
domain of the simulation.

Table 4.2: Simulation parameters for the atmospheric boundary layer over a hill

Parameter value Parameter value
Resolution [mm−1] 0.25 size X [mm] 1000

Time step [s] 0.1 size Y [mm] 600
ν [mm2 · s−1] 2× 10−4 size Z [mm] 800

body force [kg ·mm · s−2] 2× 10−6 C 0.01

4.2.1.2 Mean flow field

The effect of the hill on the flow field is investigated by examining the mean flow
velocity normalized by the free-stream velocity in the middle plane of the z-direction.
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In Figure 4.7, the velocity field is shown by a colored map, and the streamlines
are plotted to visualize the recirculation region after the hill. It can be seen that
the flow velocity is almost uniform from y/H = 5 to 15. In the region near the
hill, the velocity decreases and a recirculation region is formed after the hill. It is
worth noting that the profile of the hill is not perfectly smooth. Instead, the hill
surface looks like stair steps, which is due to the low resolution of the mesh. It

Figure 4.7: Streamlines in the middle plane of z direction, colored by normalised
mean streamwise velocity

is also essential to evaluate the results quantitatively by comparing them with the
experimental data which come from [30]. Figure 4.8 and 4.9 show the mean velocity
profiles in the middle plane of the z-direction and the plane of x/H = 0 ,respectively.
For the mean velocity in the x-direction (Figure 4.8a), the simulation results seem
to match the experimental data very well at first glance. However, the normalized
Ux of the simulation shows an overall overestimation compared to the experimental
data. For the normalized vertical velocity, the discrepancy between the simulation
and the experiment is much larger. On the windward side of the hill, the simulation
slightly underestimates the normalized Uy. As it goes to the downstream of the hill,
the mismatch becomes more and more significant. At the locations of x/H = 5 and
6.25, the simulation results are even unable to predict the sign of the normalized Uy
correctly. At the x/H = 0 plane, the flow does not separate. In Figure 4.9a, it is
noticed that at z/H = −2.5, the simulation significantly undervalues the normalized
Ux near the hill. The situation is similar for the normalized Uz.

4.2.1.3 Turbulence field

Besides the mean velocity, another interesting topic is to investigate the turbulence
field. The experimental data of the normal stresses σu, σv and σw are available in
[30]. The normalized normal stress components in the central plane of the domain as
well as in the x/H = 0 plane are plotted in Figure 4.10 and Figure 4.11 respectively.
There are considerable differences between the simulated and experimental σx, as
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a

b

Figure 4.8: Comparison of the simulated and measured mean velocity profiles in
the central plane of the domain: (a) the streamwise velocity; (b) the vertical velocity.
The red spots stand for the experimental data, and the black lines are the simulation
results.

a b c

Figure 4.9: Comparison of simulated and measured mean velocity profiles in the
x/H = 0 plane: (a) streamwise velocity; (b) vertical velocity; (c) spanwise velocity.
The red spots stand for the experimental data and the black lines are the simulation
results.
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shown in Figure 4.10a. On the windward side of the hill, namely, at x/H = −2.5
and x/H = −1.25, the σx is underestimated by the simulation not only in the near
hill region but also in the region far away from the hill. At the summit of the hill,
the simulation correctly predicts the maximum value of σx at the height of y/H = 1.
However, the simulation undervalues σx when it goes to the region where y/H > 1.
As it goes to the downstream region of the hill, the simulation still fails to predict
the maximum value of σx. The simulation performs better for σy (Figure 4.10b).
The only significant discrepancy is at x/H = 1.25 where the simulation is unable
to give the correct peak value of σy. At other locations, the simulation and the
experiment agree well with each other with small underestimation of the simulation.
The simulation also gives satisfactory results for σz (Figure 4.10c) at most of the
locations expect in the near-hill region at x/H = 1.25, where σy is underrated
remarkably. The simulation shows an overall underestimation of the normal stress
components in the x/H = 0 plane (Figure 4.11). The underestimation is generally
lager in the near-hill region than in the far-hill region.

4.2.2 Influence of forest
In this section, a domain with homogeneous forest is investigated. The results of
the simulation are compared with the experimental data. The effect of the forest is
also discussed.

4.2.2.1 Simulation setup

The computational domain is shown in Figure 4.12. The dimensions of the domain
are 1000m, 800m and 400m for the length, width and height respectively. The
homogeneous forest covers the whole ground of the domain with a height h of 20m.
The flow is driven by a constant body force 2× 10−5 N. Both of the inlet and outlet
are using the periodic boundary condition while the upper wall is using the forced
equilibrium boundary condition, which is equivalent to fixing the velocity of the
upper wall to be 1m/s. Because the upper wall is sufficiently far away from the
bottom and only the positions near to the wind turbines are of great concern, forced
equilibrium boundary condition works well for this case. In reality, the LAD varies
with the height as the crown region has dense leaves and the trunk region is less
obstructing. But in this case, the simplified constant LAD is also tested together
with the varying LAD. The distribution of the constant LAD is assumed to be a
straight line which can cover the same amount of area as the varying LAD curve
(see Figure 4.13). The value of the constant LAD is then 0.215.

4.2.2.2 Resolution and time consumption study

A rapid design process to optimize a prototype in a short period is the pursuit of
industries, and the wind industry is not an exception. Due to the limitation of the
computational time and hardware requirements, it is of utmost importance that we
have an overall estimation of the computational resource consumption before we
start the simulation. Table 4.3 shows all the resolutions tested in the simulation
and the corresponding time and memory consumption. The GPU type used here
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a

b

c

Figure 4.10: Comparison of simulated and measured normal stress profiles in the
central plane of the domain: (a) the streamwise velocity; (b) the vertical velocity;
(c) the spanwise velocity. The red spots stand for the experimental data and the
black lines are the simulation results.
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a b c

Figure 4.11: Comparison of simulated and measured normal stress profiles in
the x/H = 0 plane: (a) the streamwise velocity; (b) the vertical velocity; (c) the
spanwise velocity. The red spots stand for the experimental data and the black lines
are the simulation results.

Figure 4.12: The computational domain with homogeneous forest in green color.

Figure 4.13: Leaf area density. The area under the blue shade is the same as the
area under the black curve. The black curve follows Eq.(2.42) with zm = 0.7h and
afm = 0.38.
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is GeForce RTX 2070 SUPER with 8GB memory. As can be seen from Figure
4.14b, the maximum resolution that this GPU can handle for this case is about
0.38. Both time and memory consumption increase exponentially with the increase
of resolution. It is noticed that the time step in Table 4.3 also varies for different
cases. This is because whenever the spatial resolution is refined or coarsened, the
diffusive scaling ∆t ∝ ∆x2 should usually be obeyed. The time step length of the
highest resolution 0.35 here is used as a standard. The time steps of the other two
resolutions are chosen accordingly.

Table 4.3: The relation between resolution, time and memory consumption

Resolution Grid size Time step Time per 1M steps Memory
0.2 200x80x160=2.6M 0.3s 8.5h 1.44GB
0.25 250x100x200=5M 0.2s 14h 2.16GB
0.35 350x140x280=13.7M 0.1s 39h 6.48GB

a b

Figure 4.14: (a) The relation between resolution and time consumption. (b) The
relation between resolution and memory consumption. The red points stand for
three simulated cases and the blue curve stands for the result of data fitting.

The accuracy of the simulation results is another important factor in the choice of
resolution, besides time and memory requirements. Figure 4.15 shows the results of
three different resolutions. These results are compared with the experimental data
from Bergström at al.[3]. The mean horizontal velocity M =

√
U2 +W 2 , normal

stresses as well as shear stresses are all non-dimensionalized by the friction velocity
u∗ =

(
u′v′

2 + v′w′
2)1/4

at location y/h = 2. Generally, the higher the resolution,
the better the results, especially for the streamwise normal stress u′u′. Therefore,
in Section 4.2.2.3 the resolution of 0.35 is selected and its results are analyzed in
detail.

4.2.2.3 Results

Figure 4.16 shows a detailed comparison between LBM results, conventional CFD
results (Nebenfuhr et al., 2014 [4]) and experimental data (Bergström et al., 2013
[3]). From the perspective of mean velocity, as shown in Figure 4.16a, the results of
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a b c

d e f

g h i

Figure 4.15: Comparison between the different resolutions. From top to bottom,
the rows are the results for resolution 0.2, 0.25 and 0.35 respectively. From the
left to right, the columns are the time- and space-averaged mean horizontal velocity
profile, the normalized normal stresses and the normalized shear stress, respectively.
The experimental data come from Bergström et al.[3]
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LBM simulation show good agreement with that of conventional CFD and experi-
mental data. The influence the forest on the mean velocity is quite obvious: in the
forest area where y/h is below 1 (green area in the plot), the velocity gradient of the
case without forest is much higher than that of the case with forest, which means
that the forest can hinder the flow in the forest region. And the influence of the
forest also continues above the forest region. There is almost no difference between
the mean velocities of the constant LAD and varying LAD, except in the region
near the upper boundary. Figure 4.16b shows the normal stresses in the streamwise,
spanwise and vertical direction. The vertical normal stress does not change signif-
icantly with or without the forest. However, this is not the case for normal stress
in the spanwise direction. It is very strange that in the case without forest, the
spanwise normal stress has an abnormal bulge near the area y/h = 15. The reason
could be that the time of the data used in the time-averaged computation is not
long enough. In the streamwise direction, the effect of the forest is most significant.
The largest non-dimensional streamwise normal stress in the case without the forest
is almost 10, whereas the case with the forest shows the stress lower than 5. Figure
4.16c shows the shear stress. The shear stresses in all those cases show similar trend
and maximum value. The curves of the constant LAD and varying LAD almost
completely overlap with each other in the forest region.

4.3 Hornamossen
As the capability of GANSCANS to handle forest and complex terrain has been
tested in the previous two cases, now it is the time to apply GANSCANS to the
Hornamossen case that was initiated within the New EuropeanWind Atlas (NEWA).
The task is to simulate the flow in a complex forested terrain and to see if the model
can provide acceptable wind profiles at several validation locations. The contour
of the landscape and the distribution of the canopy height and LAD are shown in
Figure 4.17. Different from the previous homogeneous forest, the forest cover of
Hornamossen is highly heterogeneous with the canopy height and LAD varying in
different locations and heights. One similar study to the Hornamossen case is the
study carried out by Schubiger et al. [32].
For easier understanding of the readers, it is better to illustrate different levels of
simplifications that can be done to simulate the heterogeneous forest case, as shown
in Figure 4.18. It is worth noting that the simplest situation, i.e., the homogeneous
forest cover and constant LAD over the forest height, is not displayed in this figure.
This simplest situation excludes complex terrain as well as highly heterogeneous
forest covers in real cases. A relatively complex situation is to adopt a homogeneous
forest but with a varying LAD over the forest height, as shown in Figure 4.18a.
But it still does not consider the geometry of the complex terrain. Sometimes it is
possible to get satisfied results even if the forest cover is not considered at all, as in
Figure 4.18b. There are several kinds of simplifications when the forest cover is taken
into account. Figure 4.18c shows a mountain with a forest cover, but the forest cover
is quite unusual since the height of it keeps the same everywhere on the mountain
and LAD is a constant over height. Figure 4.18e has the same forest configuration
as Figure 4.18c. The only difference is that in Figure 4.18e, the LAD changes over

32



4. Results and Discussion
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Figure 4.16: Comparison of the mean velocity, normal stresses and shear stress
with the conventional CFD results (Nebenfuhr et al., 2014 [4]) and the experimental
results (Bergström et al., 2013 [3])
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height. Figure 4.18f gives the most complex situation, that is, the vegetation types
are different at different locations on the mountain. In some places, there is even
no vegetation cover at all. Consequently, LAD changes not only over the height but
also across different locations.

4.3.1 Simulation setup

Hornamossen covers a large area of 40 by 40 kilometres. It would be certainly better
to take the whole topography into consideration, but because of limited time and
computer resources, it is decided to simulate a 12 by 5 kilometres terrain, as shown
in Figure 4.17b, 4.17d and 4.17e. The small domain can cover most of the validation
points (listed in Table 4.4) as well as the turbine locations (listed in Table 4.5).

Figure 4.19 shows the 3D representation of the computational domain and the
boundary conditions. The height of the domain is 1000 m. The upper boundary
uses symmetry boundary condition (see Section 2.1.6.4), and the bottom boundary
with the no-slip wall boundary condition (see Section 2.1.6.3). The front wall and
the back wall are periodic (see Section 2.1.6.2). The inlet is imposed with the ve-
locity inlet boundary condition, which is set with a velocity of 1m/s for the initial
condition. However, it will change generally as time goes by because a constant
force is exerted on the whole domain. At the outlet, the gradients of velocity and
density are zero. In order to generate turbulent flow near the inlet, three cuboids
are put near the inlet. It is noted that the cuboids should not be put too close to the
inlet (as shown in Figure 4.20b). Otherwise, the cuboids may act as obstacles that
force the flow to return at the inlet. Also, the cuboid should not be too large or too
close to the region with the forest and the mountain. Otherwise, the recirculation
regions of the cuboids may extend into the forest and mountain region. According
to the numerical tests conducted in this thesis, a proper, but definitely not unique,
combination of the cuboid size and position is proposed: the size of the cuboid is
150×150×150 m and the cuboids are 500 m from the inlet. For the sake of brevity,
the testing cases are not presented here. To save the necessary height of the com-
putational domain, the absolute heights of the mountain and forest are deducted
together by 205 m. The resolution of the mesh is 0.06, which means the sizes of a
cell in all three dimensions are about 16.67 m. The time step length is set to 0.1s.

A stationary case is simulated with the wind coming from the west and blowing
towards the east. The geostrophic wind speed and direction are 11.7m/s and 264
degrees, respectively. As a simplification made here, the wind direction of 270
degrees is assumed here to facilitate the setup of boundary conditions. Because
there have been no existing formulas or similar simulations in the literature that
are used to predict a constant body force driving the flow, the force is determined
by trial and error to be 10−4 N in the present study. Another simplification made
is that a constant LAD of 0.215 is applied to the entire forest cover (see Figure
4.18d) because GANSCANS cannot deal with more complicated situations such as
the cases shown in Figure 4.18e and 4.18f.
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a b

c d

e f

Figure 4.17: The landscape elevation of the Hornamossen site. The red spots indi-
cate the locations of the wind turbines, and the green spots indicate the validation
points where numerical data are monitored. (a) The elevation in the whole domain;
(b) the elevation zoomed in to the region near the turbines and validation points;
(c) the canopy height in the whole domain; (d) the canopy height zoomed in to the
region near the turbines and validation points; (e) the leaf area index in the whole
domain; (f) the leaf area index zoomed in to the region near the wind turbines and
validation points. Data come from [5]
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a b

c d

e f

Figure 4.18: (a) The Homogeneous forest with varying LAD; (b) only mountain
without forest cover; (c) the mountain with same forest height everywhere and the
forest has constant LAD over height; (d) the mountain with different forest height
in different locations, but the LAD of the forest is the same constant everywhere;
(e) the mountain with the same forest height everywhere, but LAD is changing over
the forest height; (f) the real situation in nature, where the forest height varies and
even diminishes in some places, and where different types of vegetation exist with
varying LAD along the heights. The green area indicates the forest cover, the grey
area stands for the mountain, and blue area is the water region.

Figure 4.19: Computational domain of Hornamossen. Here the cubes are shown
as an example, as their size and location are adjusted in the practice.
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a

b

Figure 4.20: The effects of cubes in terms of the cube size and position.

Table 4.4: Validation points location

Site N E N (sweref99TM) E (sweref99TM) if covered
Lidar 1 57.984 13.853 6427452 432146 Yes
Sodar 1 57.980 13.869 6427046 433138 Yes
Sodar 2 57.979 13.8884 6426942 434208 Yes
Sodar 3 57.983 13.899 6427329 434908 Yes
Lidar 2 57.979 13.910 6426917 435562 Yes
Sodar 4 57.984 13.938 6427410 437224 Yes
Sodar 5 57.986 13.952 6427581 438028 Yes
Sodar 6 57.991 13.962 6428213 438655 Yes
Sodar 7 57.995 14.022 6428626 442194 No
Tower 57.981 13.942 6427059 437410 Yes
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Table 4.5: Turbines location

Site N (sweref99TM) E (sweref99TM) if covered
HRM1034 6428071 437030 Yes
HRM1047 6427576 437267 Yes
HRM1083 6428243 439023 Yes
HRM1105 6428735 439337 Yes
HRM1015 6427164 436674 Yes
HRM1027 6427625 436716 Yes
HRM1057 6427423 437682 Yes
HRM1066 6427038 437413 Yes
HRM1075 6426598 437406 Yes
HRM1097 6428700 438774 Yes

4.3.2 Results
At the validation points, several sensors are installed to gather information such as
wind speed and wind direction. In order to compare the simulation results with
the measurement results, the data at the validation points are extracted from the
computational domain. As shown in Figure 4.21, the velocity profiles at different
validation points are plotted. At the region near the upper boundary, there is an
abnormal increase in every profile, which may result from that the flow field has not
reached a steady state yet. This assumption is confirmed by the time history of the
velocity at validation points, as shown in Figure 4.22. The velocity at the validation
points of two different heights (Y=200 m and Y=800 m) are extracted every 1×105

time steps corresponding to physical time 1× 104 s. If the flow field has reached a
steady state, the velocity should be oscillating in a small range. However, as shown
in Figures 4.22a and 4.22b, the overall trend of the velocity history increases with
time. It means that the flow field is still developing. It is also noticed that although
the field has not achieved a steady state, the highest streamwise velocity at Y=800
m is already above 12 m/s, indicating that the constant body force exerted on the
field is too large. Due to limited time and computational resources, the exact body
force leading to the geostrophic wind speed of 11.7 m/s has not been found yet. But
the methodology of determining this force is straightforward: first apply a constant
body force (lower than 10−4 N from previous results), then run the simulation long
enough and check the time history of the velocity at validation points to see if a
generally steady mean velocity superimposed with fluctuations can be achieved.

4.3.3 Influence of boundary conditions
In the last case, it is noted that the value of the constant body force needs to be
carefully determined to obtain the desired wind speed. Boundary conditions are
another important factor that also influences the flow field. In this section, different
boundary conditions are applied to inlet and outlet. Figure 4.23 shows the two sets
of boundary conditions. The first one, as show in Figure 4.23a, uses the periodic
boundary condition at the inlet and outlet, while the other boundary conditions are
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Figure 4.21: Velocity profiles of Ux at validation points

a b

Figure 4.22: The time history of the velocity at the validation points (a) inside
boundary layer at Y=200 m, and (b) outside boundary layer at Y=800 m
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the same as in Figure 4.19. Similarly, the second simulation employs a boundary
condition of zero velocity and density gradient at inlet and outlet. The initial flow
field for the two simulations with the new boundary conditions comes from the
previous simulation shown in Figure 4.19. Therefore, the only difference among the
simulations is in the boundary conditions.
Figures 4.24 and 4.25 are the preliminary results of the whole flow field. It needs to
be mentioned that the velocity shown in these figures is in lattice unit. In order to
transfer the lattice velocity to the physical velocity, a transfer factor of dx/dt = 166.7
should be multiplied. For the case with periodic inlet and outlet, it appears that after
1 million more time steps, the maximum value of the velocity still keeps changing.
For the case with the zero-gradient inlet and outlet, the inlet velocity is fixed at
about 10 m/s. However, after 6× 105 time steps, the simulation diverges.

a

b

Figure 4.23: Other boundary conditions tested for the Hornamossen case (the size
and location of the cubes may change): (a) both inlet and outlet are periodic; (b)
only inlet is changed from the velocity inlet to the zero-gradient boundary condition,
and other boundary conditions are the same as those in Figure 4.19.
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Figure 4.24: Periodic inlet and outlet

a b

c d

Figure 4.25: Zero-gradient inlet and outlet
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5
Conclusions

In this thesis work, the performance of GASCANS, a lattice Boltzmann compu-
tational fluid dynamics solver programmed for GPU architectures using C++ and
CUDA, has been tested in three cases: turbulent channel flow, an atmospheric
boundary layer with a hill, and an atmospheric boundary layer with forest cover.
The simulation results of these cases have been compared with the experimental
data and show good agreement. These simulations confirm that GASCANS can be
applied to a wide range of wind-power engineering problems. In addition, a com-
plicated case named Hornamossen with complex terrain and forest cover was also
tested. However, some difficulties were encountered in the determination of numeri-
cal parameters such as a constant body force driving the flow, boundary conditions,
and methods of generating or triggering turbulence at the inlet.
There are many open questions that have been noted in the course of this thesis
work. They can be explored in the future.

• The effect of the Coriolis force. In this project, the Coriolis force is ignored,
and the flow is driven by a constant body force. This makes it very difficult to
control the flow velocity. If the Coriolis force is taken into account, a certain
value of the geostrophic wind speed can be set, then the Coriolis force can
drive the flow and finally reach a steady state.

• The varying LAD over the forest height. GASCANS can now only deal with
varying LAD in flat terrain. In order to make the simulation setup better
represent the real situation, it is worthwhile to develop a code module that
accounts for the effect of varying LAD.

• Multiple GPUs. In this thesis work, only one GPU is employed. For large scale
simulations, however, parallel computing with multiple GPUs is necessary. A
future work will be to testify the performance of GASCANS using multiple
GPUs.

Overall, the present study provides a comprehensive evaluation of GASCANS and
paves the way for the future development of this LBM code.
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